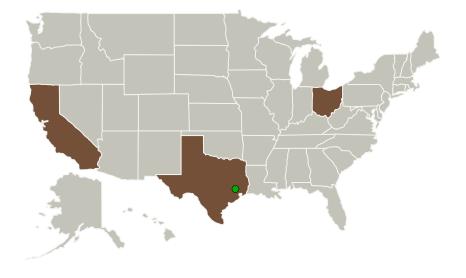
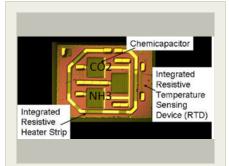
Low Mass/Power Sensor Suite for Spacesuits, Phase I




Completed Technology Project (2016 - 2017)

Project Introduction

To provide additional telemetry and data for long-term mission, the composition of internal atmosphere of spacesuits must be determined. Specifically, the unambiguous detection and quantification of carbon dioxide is crucial for mission completion. Detection of other gasses (ammonia, oxygen) is also necessary for a complete sensor suite. Seacoast Science and Case Western Reserve University propose a sensor suite for the sensitive and selective detection of CO2 and other specified gasses. This will be accomplished using Seacoast?s proprietary sensor and the application of specially polymers developed in the laboratory of Professor Rigoberto Advincula. We will develop a microsensor array for atmospheric gases, specifically CO2 and NH3 (Phase I) and integrate it into a compact mission-ready sensor suite. In Phase I the feasibility of developing the proposed system will be demonstrated. In Phase II a further optimized system will be fabricated, tested and delivered to NASA for validation.

Primary U.S. Work Locations and Key Partners

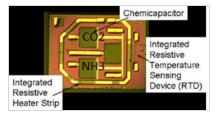
Low mass/power sensor suite for spacesuits, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Low Mass/Power Sensor Suite for Spacesuits, Phase I



Completed Technology Project (2016 - 2017)

Organizations Performing Work	Role	Туре	Location
Seacoast Science,	Lead	Industry	Carlsbad,
Inc.	Organization		California
Case Western Reserve	Supporting	Academia	Cleveland,
University	Organization		Ohio
Johnson Space	Supporting	NASA	Houston,
Center(JSC)	Organization	Center	Texas

Primary U.S. Work Locations		
California	Ohio	
Texas		

Images

Briefing Chart Image

Low mass/power sensor suite for spacesuits, Phase I (https://techport.nasa.gov/imag e/125838)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Seacoast Science, Inc.

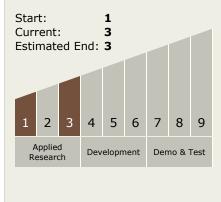
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Stephen T Hobson

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Low Mass/Power Sensor Suite for Spacesuits, Phase I

Completed Technology Project (2016 - 2017)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - □ TX06.2 Extravehicular Activity Systems
 - ☐ TX06.2.2 Portable Life Support System

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

